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Abstract
Understanding the Linux kernel is challenging due to its large
and complex program state. While existing kernel debugging
tools provide full access to kernel states at arbitrary levels
of detail, developers often spend a significant amount of
time sifting through redundant information to find what is
truly useful. Additionally, the textual results provided by
traditional debuggers are often insufficient for expressing
high-dimensional information in a readable manner.

This paper presents Visualinux, the first debugging frame-
work that can simplify the program state of the Linux kernel
to a level that can be visually understood with low program-
ming complexity and effort. Visualinux includes a domain-
specific language for specifying simplifications of a kernel
object graph, an SQL-like domain-specific language for cus-
tomizing the simplified object graph, and a panel-based inter-
active debugger. Evaluation results show that Visualinux can
visualize various complex kernel components and efficiently
assist developers in diagnosing sophisticated kernel bugs.

CCS Concepts: • Software and its engineering→ Soft-
ware testing and debugging;Operating systems; •Human-
centered computing → Visualization toolkits.
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1 Introduction
For years, developers have used GDB [11, 14, 28] and log/
trace tools [19, 22, 23] to debug the Linux kernel. These tools
provide mechanisms to examine kernel states at various lev-
els of detail. However, considering that the human brain
can only handle a limited amount of information at a time,
developers are often overwhelmed by the abundance of in-
formation. They must take additional steps to simplify the
information and isolate the truly useful data.
Unfortunately, the low-level debugging mechanisms (or

even modern debuggers like drgn [2], which allows dynamic
introspection of the running kernel with Python scripts) re-
quire significant human or programming effort to overcome
the complexity of the kernel state and extract a specific subset
of the information for a particular debugging objective, such
as diagnosing the root cause of a failure or understanding
the implementation of a data structure. Even worse, much of
this effort is wasted once a debugging session is terminated.

Motivating example. The red-black tree for virtual mem-
ory area management was finally retired in the Linux kernel
6.1. Its successor, the maple tree [5], is a read-lock-free range-
based B-tree that scales better on multi-processor systems.
We struggled to understand this new data structure: a

textual interface naturally falls short of displaying high-
dimensional information (e.g., an interconnected, complex
data structure) in a readable way. We wrote scripts to un-
wrap the union type of nodes and parse the compressed
pointers. Nevertheless, comprehending the list of tree nodes
with indirect pointers remained mentally challenging.

The obstacle to understanding the maple tree is rooted in
the complexity of the Linux kernel: There are millions of live
objects at runtime, with complex objects having hundreds of
fields (e.g., task_struct, which represents a process). Ad-
ditionally, objects are often referenced through containers.
Simply “printing” these objects as text produces an over-
whelming amount of information for debugging purposes.
Such complexity leads to the following question:

What kind of mechanism can help developers ef-
fectively and efficiently customize a view of the
kernel object graph for the purpose of understand-
ing kernel states?

Approach. We respond to this question by observing that
the kernel state is essentially a graph, where kernel objects
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are pointer-connected nodes. A human debuggers’ (implicit)
goal is to simplify this graph to meet their debugging objec-
tives. This paper argues that such simplified views can be
created through two layers of simplification:
1. ViewCL, the View Construction Language, which allows

for the creation of object graphs (plots) at customizable
levels of abstraction. ViewCL employs three fundamental
operators—prune, flatten, and distill—to programmatically
reduce the kernel states.

2. ViewQL, the View Query Language, which enables cus-
tomization of a simplified object graph in a developer-
friendly manner. ViewQL provides the ability to exclude
specific irrelevant object types or fields, eventually pro-
ducing a human-readable plot.
The following ViewCL program defines a plot of the red-

black tree managing the Completely Fair Scheduler (CFS) [4]
run queue on the first processor:

1 // Declare a Box for a task_struct object
2 define Task as Box<task_struct> [
3 Text pid, comm
4 Text ppid: parent.pid
5 Text<string> state: ${task_state(@this)}
6 // ${...} evaluates a C expression
7 // @this refers to the Box itself
8 // <...> denotes the display format
9 Text se.vruntime
10 ]
11
12 // cpu_rq(0) is the run queue of the first processor
13 root = ${cpu_rq(0)->cfs.tasks_timeline}
14
15 // RBTree is our predefined container data structure
16 // @root refers to the definition in Line 13
17 sched_tree = RBTree(@root).forEach |node| {
18 // For each node yield (create) a box of Task whose
19 // associated object is @node.se.run_node
20 yield Task<task_struct.se.run_node>(@node)
21 }
22
23 // Plot the object graph rooted at @sched_tree
24 plot @sched_tree

In ViewCL, a Box encodes the fields of interest to the
developer (Lines 1–10), and ${...} evaluates a C expression,
which can be used for declaring fields (Line 5) or retrieving
data from the kernel state (Line 13). We also implement
container data structures like RBTree as part of the “standard
library.” When provided with a closure in forEach, it collects
the generated boxes in the loop and constructs an object
graph (Lines 15–21). At a GDB breakpoint, this program
produces a simplified plot of the run queue:

For systems under heavy workloads, the plot might still
be too large to read. To simplify it further, one can use the
following ViewQL program, which operates on a generated
plot and toggles the display-related attributes of the boxes:

1 // Select all tasks
2 task_all = SELECT task_struct FROM *
3
4 // Select tasks that has pid or ppid of 2
5 task_2 = SELECT task_struct
6 FROM all_tasks
7 WHERE pid == 2 OR ppid == 2
8
9 // Mark tasks that are not process #2 or its direct
10 // children with attribute "collapsed: true"
11 UPDATE task_all \ task_2 WITH collapsed: true

ViewQL follows most of the SQL syntax, which SELECTs
a set of objects and UPDATEs their key-value attributes. The
example above focuses on process #2 and its direct children
in the run queue by updating all other tasks in the run queue
as “collapsed”.
The separation of ViewCL and ViewQL, rather than us-

ing a single language, explicitly divides the tasks of extract-
ing the kernel state for visualization (ViewCL) and creating
a visually tractable plot (ViewQL). With commonly used
Linux kernel data structures and containers being prede-
fined in ViewCL, most developers can work exclusively with
ViewQL, often without even being aware of ViewCL’s ex-
istence. The simplicity of ViewQL also enables large lan-
guage models to customize plots based on user’s textual
descriptions, without requiring knowledge of either ViewCL
or ViewQL.

Contributions. This paper presents a novel attempt to
bridge the gap between a complex system’s runtime state and
the limited attention span of the human brain. We proposed
the first programmatic approach that enables program state
visualization of the Linux kernel. Specifically, we designed
two domain-specific languages (DSLs), ViewCL and ViewQL,
whichwork together to break down the large, complex kernel
state into simpler state “views” that are visually tractable.
We implement these ideas in a tool, Visualinux, which

functions as a detached front-end for GDB [14]. Visualinux
offers developers a user-friendly, push-button interface to
managemultiple views. It is capable of porting representative
figures from the well-known (though now obsolete) textbook
Understanding the Linux Kernel [35] to the latest Linux 6,
and we demonstrate its effectiveness through case studies
involving the diagnosis of real-world Linux kernel CVEs [67,
68]. Visualinux is publicly available at:

https://icsnju.github.io/visualinux

Paper organization. The rest of this paper is organized
as follows. Section 2 presents the design of Visualinux DSLs
and the interactive debugger, followed by concrete examples
in Section 3. Implementation details and evaluation are dis-
cussed in Section 4 and Section 5, respectively. Sections 6
and 7 summarize the related work and conclude the paper.

https://icsnju.github.io/visualinux
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(a) Flatten

(b) Prune (c) Distill

Figure 1. Illustration of the mechanisms for simplifying the kernel state.

2 Unraveling the Kernel State
Visualinux is built upon Daniel Jackson’s small scope hypoth-
esis [51], which suggests that a small portion (sufficiently
small to be visually processed by the human brain) of the
state suffices for understanding and debugging a specific
part of the system. Therefore, our first step towards practical
kernel debugging is an efficient mechanism to simplify the
full kernel state for a specific debugging objective.

2.1 Problem Analysis
The kernel state is essentially a graph, where kernel objects
are nodes and nodes are connected by pointers. We observe
that developers understand (simplify) a state in terms of a
debugging objective by repeatedly applying the following
three operations to simplify a running state:
1. Prune. To produce small states, developers prune (re-

move) fields, objects, and relations that are irrelevant to
the debugging objective. Figure 1b shows an example

where most fields in the task_struct are removed for
brevity, except for the process identity and scheduling-
related information.

2. Flatten. An indirect connection between objects can be
long while intermediate objects are irrelevant to the de-
bugging objective. Developers flatten (or compress) a path
as a direct link between objects. For example, Figure 1a flat-
tens the long path from a task_struct to its associated
sockets, skipping intermediate objects in three different
kernel modules.

3. Distill. Data structures can be difficult to read in their
node-pointer forms. For example, memory-mapped re-
gions are organized as a tree for faster queries. However,
for debugging objectives not specifically involving the
tree structure, a flattened linear list of intervals may read
better. Therefore, developers intentionally distill a kernel
data structure into a compact format that retains objects’
logical relations. Figure 1c provides such an example.
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Given a root node (e.g., a pointer to a task_struct) as
the starting point of visualization, we observe that applying
these operations yields a visually understandable view of the
kernel state. For years, kernel developers have implicitly fol-
lowed this procedure to simplify kernel states for debugging.
The Linux kernel includes GDB scripts to (textually) visual-
ize kernel data structures [11, 20], and tools like drgn [2, 13]
are designed to enhance the versatility and efficiency of this
procedure. Visualinux follows this approach.

2.2 Plotting an Object Graph
This paper encodes the mechanism of prune, flatten, and
distill as a domain-specific language, ViewCL, to formally
express the kernel state simplification procedure under a
specific debugging objective. The (simplified) core syntax of
ViewCL is listed below, with further implementation details
discussed in Section 4:

Program 𝑃 F 𝑏∗

BoxDecl 𝑏 F Box box { 𝑣+ }
View 𝑣 F view { 𝑖∗ }
Item 𝑖 F Text(expr)

| box (expr)
| Link(box (expr))

The fundamental building block of ViewCL is Box, corre-
sponding to a C struct object, which is plotted as a box. One
can also construct “virtual” boxes that do not correspond
to real objects. Each Box encloses its Views, with each view
corresponding to a customized layout to plot an object. The
concept of View is inspired by database system views [82].
A View consists of items: a Text, a Link, or another nested
Box. A Text displays a string, and a Link denotes a logical
relation (e.g., reachability in the object graph) between two
boxes. Every Link is always a member of a Box pointing to
another Box. A pointer can naturally correspond to a Link.

Views allow one to plot an object (box) with different levels
of details and focuses. For example, the ViewCL program
below offers three views of a task_struct:

1 define Task as Box<task_struct> {
2 // Default view: only pid and comm (command)
3 :default [
4 Text pid, comm
5 ]
6
7 // Scheduler view: extends default with vruntime
8 :default => :sched [
9 Text se.vruntime
10 ]
11
12 // Scheduler-rq view: displays the task's run queue
13 :sched => :sched_rq [
14 // A link named "runqueue" to @rq defined below
15 Link runqueue -> @rq
16 ] where {
17 rq = ... // A box for displaying the run queue
18 }
19 }

The => operator is used for view inheritance, allowing a
view to include all items from another view. In this example,

:sched_rq inherits from :sched, which includes the pid,
comm, and se.vruntime items.
Given a Box type and an expression indicating the root

object, Visualinux will traverse the runtime object graph
through the links (i.e., pointer relations) recursively until
all reachable objects are processed. A corresponding box
will be created for every object reached. We also provide
ViewCL programs (with built-in views) for both generic data
structures (linked lists, red-black trees, etc.) and frequently
used objects (task_struct, run queue, files, etc.), such that
customized simplification can usually be achieved within
modifying a few lines of ViewCL code.

The prune, flatten, and distill operations in Section 2.1 are
implemented as follows in ViewCL:
1. The definitions of Box and View encode the prune opera-

tion. Observing that most of the state data is irrelevant to
a specific debugging objective, ViewCL specifies what to
plot, i.e., the complement of objects to be pruned.

2. ViewCL introduces dot-connected fields to flatten a data
path. For example, we can use Text(parent.pid) or Link
(files.fdtab.fds) to bypass the intermediate links be-
tween objects.

3. ViewCL implements distill by providing converter func-
tions. These functions take a container object, such as a
red-black tree, hash list, or extensible array, and convert
it into conceptually simpler abstract data types: either an
ordered sequence or an unordered set.

2.3 Customizing a Simplified Object Graph
Evaluating a ViewCL program on a kernel state yields a sim-
plified kernel object graph𝐺 (𝑉 , 𝐸) where vertices are objects
(Boxes) and edges are pointers (Links). We can further re-
fine and customize the visualization of 𝐺 using ViewQL, an
SQL-like domain-specific language, limited to the following
syntax (nested queries are disallowed):

Statement 𝑠 F 𝑣 = SELECT expr FROM 𝑣 [WHERE 𝑐]
| UPDATE 𝑣 WITH attr : value

Condition 𝑐 F 𝑐 AND 𝑒
| 𝑐 OR 𝑒
| 𝑒

CondExpr 𝑒 F member op value

Specifically, given a state graph 𝐺 (𝑉 , 𝐸):
• SELECT identifies a subset of vertices (boxes) in 𝑉 under
the filtering condition from WHERE.

• UPDATE assigns attributes to the set of selected boxes. At-
tributes determine how each box is displayed, e.g., select-
ing a view (by setting the view attribute) or making a box
invisible (by setting trimmed to true).

In contrast to ViewCL’s focus on constructing an object
graph, ViewQL is designed to allow developers to easily
customize the object graph without needing to understand
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Figure 2. The front-end of Visualinux debugger with two primary panes and a secondary pane. Through the “focus” operation,
the developer can easily find a specified task_struct in two process management structures for different purposes.

ViewCL. ViewQL offers flexible last-mile customization for
developers’ own debugging objectives.

Suppose that a ViewCL program implements three views:
default, show_mm, and full for task_struct. One can con-
figure the process tree to display memory mapping for all
user threads (tasks associated with address space) by:

1 // Select tasks with a non-null "mm" field
2 user_threads = SELECT task_struct
3 FROM *
4 WHERE mm != NULL
5
6 // Let these tasks display the "show_mm" view
7 UPDATE user_threads WITH view: show_mm

One can also further configure the memory mapping to dis-
play only the writable memory areas:

1 // Select memory areas that do not have a writable flag
2 // is_writable is a ViewCL-defined field
3 non_writable_vmas = SELECT vm_area_struct
4 FROM *
5 WHERE is_writable != true
6
7 // Set these VMAs' "collapsed" attribute, for displaying
8 // only a small click-to-expand button
9 UPDATE non_writable_vmas WITH collapsed: true

2.4 A Visual Interactive Debugger
Developers may need to simultaneously inspect different
parts of a kernel state, or even different perspectives of a
single data structure (e.g., a process tree as an ordered list, or
simultaneously as a raw data structure in the run queue). The
visual interactive debugger provides a paneling mechanism
for creating linked or detached views over two types of panes
(each pane displays an object graph)1:
1. Primary pane, which displays a ViewCL-extracted object

graph, where ViewQL programs can be applied to further
customize.

1We borrowed this idea from tmux [26], a widely used terminal multiplexer
that provides pane-based window management.

2. Secondary pane, which displays a focused object picked by
the developer from another primary or secondary pane.
Starting from a single primary pane displaying an object

graph, panes can be managed as a pane tree using the fol-
lowing operations:
1. Split (vertically or horizontally) an existing primary pane

to create a new primary pane.
2. Select (by clicking objects or using ViewQL) a set of ob-

jects from a pane to create a new secondary pane for
displaying them.

3. Refine a set of objects displayed in a pane by applying a
ViewQL program.
Our debugger also allows developers to simultaneously

explore multiple plots displayed in different panes. For in-
stance, a “focus” operation searches for a specified object on
all displayed object graphs. This is useful when the devel-
oper obtains an object from one data structure and wants to
figure out how it is simultaneously managed by other data
structures. Figure 2 shows an example, where the developer
searches for a process in a parent tree (left) and a scheduling
tree (right).

Finally, the simplicity of ViewQL (only SELECT and UPDATE
without nested queries) enables large language models to
synthesize ViewQL programs from natural-language descrip-
tions, and developers can directly “talk” to the debugger to
obtain a designated plot. Taking the previous example of
displaying mm struct for user threads, which can be described
as “display the task_structs that have non-null mm mem-
bers with the show_mm view.” This natural-language descrip-
tion, plus our predefined ViewQL examples for in-context
learning, yields the following correctly synthesized ViewQL
program for view customization:

1 a = SELECT task_struct
2 FROM * WHERE mm != NULL
3 UPDATE a WITH view: show_mm
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3 Debugging with Visualinux
To diagnose sophisticated bugs, developers typically debug
interactively in an iterative “guess-and-check” fashion [29,
59]. Given a reproducible failure, a developer formulates
hypotheses about the root cause based on their experience,
observes the program state to test these hypotheses, and uses
the results to narrow down the problem scope. This iterative
process continues until the root cause is identified.

Visualinux enhances this procedure by extending GDB
with a set of CLI-like commands that can be invoked on
breakpoints. Using these commands, developers can evaluate
ViewCL programs over the current program state to generate
object graphs, which are sent to the visualizer. They can also
flexibly manipulate the graphs via ViewQL programs (or
even using natural language with the help of LLM), such as
switching views for a group of objects that have multiple
views, and collapsing a group of visually distracting objects.

3.1 Example (1): Live Visualization of an
Under-documented Data Structure

The Linux kernel 6.1 introduces the maple tree [5], a scal-
able data structure for maintaining a set of ordered intervals,
replacing the two-decade-old red-black tree-based imple-
mentation of memory-mapped regions. The maple tree is
a range-based B-tree for tracking gaps and storing ranges
using read-copy-update (RCU) [24]. It is one of the most
complex generic data structures in today’s Linux kernel.
Unfortunately, like many newly developed components,

thorough documentation and tutorials for the maple tree are
lacking. Developers may find it challenging to understand
its design and implementation details. Existing documenta-
tion [5, 21, 50] provides introductory concepts, design princi-
ples, and APIs but lacks details of the data structure, such as
how it maintains node relations, performs data compaction
to achieve high efficiency, or leverages the RCU mechanism
to support lock-free updates.
At the time of writing, the authors are not aware of any

existing diagrammatic representation of this novel kernel
data structure. With Visualinux, we plot the maple tree in ap-
proximately 70 lines of ViewCL code and around 100 lines of
GDB Python extensions for node type checking, tree traver-
sal, and object graph construction. About half of the ViewCL
code is straightforward declarations of object fields, andmost
of the GDB Python code is Python implementation of helper
functions for parsing the data structure.

The simplified ViewCL program is shown in Figure 3. The
where clause (e.g., Lines 19–62) of a box creates a local scope,
allowing variables to be defined and referenced in the box
items. For instance, @slots is defined on Line 34 and refer-
enced as an embedded object field on Line 17.
A maple node (Line 13) is a complex union that consists

of multiple levels of indirection, containing either 10 or 16
“slots” depending on the node type. We use a switch-case

1 // ${...} evaluates a C expression
2 // @{...} refers to a ViewCL object
3 // @this denotes the box itself
4
5 define VMArea as Box<vm_area_struct> [
6 // Display 64-bit numbers as hexadecimal
7 Text<u64:x> vm_start, vm_end
8 // ...
9 Link vm_file -> @...
10 Link anon_vma -> @...
11 ] where { ... }
12
13 define MapleNode as Box<maple_node> [
14 Text<u64:x> @last_ma_min, @last_ma_max
15
16 // ViewCL container objects
17 Container slots: @slots
18 Container pivots: @pivots
19 ] where {
20 // Variables defined in the where clause can be
21 // referenced in the parental scope
22
23 is_leaf = ${mte_is_leaf(@this)}
24 node = ${mte_to_node(@this)}
25 pivots = ...
26
27 // These values are used in MapleNode items; ViewCL
28 // collects the ma_min and ma_max in the last loop
29 // interation (Lines 42-43)
30 last_ma_min = @ma_min
31 last_ma_max = @ma_max
32
33 // Plot the maple node slots according to its node type
34 slots = switch ${mte_node_type(@this)} {
35 case ${maple_leaf_64}, ${maple_range_64}:
36 // Plot the slots as an array
37 Array(@node.mr64.slot).forEach |item| {
38 // Generate a box for each item in @node.mr64.slot
39 yield Box [
40 Link slot -> @slot_to_plot
41 ] where {
42 ma_min = ${ma_calc_min(...)}
43 ma_max = ${ma_calc_max(...)}
44
45 slot = switch ${ma_slot_check(...)} {
46 // A live maple tree slot
47 case ${true}:
48 switch @is_leaf {
49 // Leaf node: this is a VMA
50 case ${true}: VMArea(@item)
51 // Non-leaves: recursive construction
52 case ${false}: MapleNode(@item)
53 }
54 // Unavailable slot, e.g., pending-free
55 case ${false}: NULL
56 }
57 }
58 }
59 case ${maple_arange_64}: ...
60 otherwise: ...
61 }
62 }
63
64 define MapleTree as Box<maple_tree> [
65 Link ma_root -> @ma_root
66 ] where {
67 type = ${mte_node_type(@this.ma_root)}
68 ma_min = ${0}
69 ma_max = ${mt_node_max(@type)}
70 ma_root = switch ${xa_is_node(@this.ma_root)} {
71 case ${true}: MapleNode(@this.ma_root)
72 case ${false}: VMArea(@this.ma_root)
73 }
74 }

Figure 3. ViewCL program for plotting maple trees.
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Figure 4. Visualizing a maple tree representation of the memory areas of a process.

statement to unwrap the enumeration type, which enables
the display of different types of nodes with distinct boxes
(Lines 34–35, 59–60) and conditional object generation (Lines
45–56). Variables in the where clause can be accessed in the
parental scope. The items defined in Line 14 refer to Lines
30–31, which, in turn, reference Lines 42–43.
One can also use ViewQL to further simplify and cus-

tomize the plot. The following ViewQL program collapses
the large but useless lists of slot pointers and trims all writable
memory areas to help focus on the read-only ones (assuming
that this is the debugging objective), yielding the plot in
Figure 4, which is readable as a data structure describing the
address space of a process.

1 // Collapse the slots field of all maple_node objects
2 slots = SELECT maple_node.slots
3 FROM *
4 UPDATE slots WITH collapsed: true
5
6 // Make all writable memory areas invisible
7 writable_vmas = SELECT vm_area_struct
8 FROM *
9 WHERE is_writable == true
10 UPDATE writable_vmas WITH trimmed: true

3.2 Example (2): Understanding a Security Breach
Figure 5 presents a simplified kernel trace of CVE-2023-
3269 [68], a high-severity vulnerability caused by concurrent

1 // CPU #0
2 mm_read_lock(&mm->mmap_lock)
3 expand_stack()
4 mas_store_prealloc()
5 ...
6 mas_free()
7 ma_free_rcu()
8 call_rcu(&mt_free)
9 // node is dead
10 mm_read_unlock(&mm->mmaplock)
11 ... // wait for RCU period
12 rcu_do_batch()
13 mt_free_rcu()
14 kmem_cache_free()
15 // node is freed
16
17

// CPU #1
mm_read_lock(&mm->mmap_lock)
find_vma_prev()

mas_walk()
...

node = rcu_deref_check()
// node pointer fetched

mas_prev()
...

rcu_deref_check(node..)
// UAF occurs

mm_read_unlock(&mm->mmaplock)

Figure 5. A simplified kernel function call trace that can
trigger the use-after-free bug of CVE-2023-3269. CPU #0
holds a read lock (Line 2) and attempts to free a node (Lines 6–
8). The actual free operation is deferred by RCU (Lines 12–14)
until after a grace period. However, this leads to a use-after-
free error on Line 15 when CPU #1 is concurrently reading
the same data structure.

use-after-free (UAF). The root cause of the vulnerability is a
CPU holding mm_read_lock that frees an object. The actual
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free is deferred until after the RCU grace period, causing a
subtle concurrent UAF. It took the Linux kernel developers
nearly two weeks to reach a consensus on the bug and pro-
vide a patch [8]. Manifesting this bug involves interactions
between multiple kernel mechanisms: address spaces (includ-
ing the newly introduced maple tree), memory management,
and lock-free synchronization.

Visualinux can provide an intuitive visualization of both
the maple tree and the RCU waiting list to help develop-
ers understand how corrupted states caused the bug. Dur-
ing interactive debugging, developers can also customize
which state information of these data structures should be
displayed, such as held locks, bit flags, and the reference
count, based on their interest.

Suppose that a developer can consistently observe a UAF
error on a maple tree node. A data structure plot (like Fig-
ure 4) would reveal that the UAF always occurs when derefer-
encing a leaf node. This indicates that the internal structure
of maple tree may be irrelevant to the UAF. Correspondingly,
the developer can slightly modify the ViewCL program to re-
move all non-leaf nodes by creating a new container through
ViewCL’s converter function (Line 15):

1 define MMStruct as Box<mm_struct> {
2 :default [
3 Text<u64:x> mmap_base
4 Text mm_count: mm_count.counter
5 Text map_count
6 ]
7 :default => :show_vmas [
8 Link mm_maple_tree -> @mm_mt
9 ]
10 + :default => :show_addrspace [
11 + Link mm_addr_space -> @mm_as
12 + ]
13 } where {
14 mm_mt = MapleTree(@this.mm_mt)
15 + mm_as = Array.selectFrom(@mm_mt, VMArea)
16 }

A MapleTree maintains an ordered set. Array.selectFrom
traverses such a set and produces a sorted list of the objects
in the set. We assign this list to mm_as (Line 15), which is dis-
played in the “address space” view (Lines 10–12), to provide
a pmap-like list of memory-mapped regions.
The developer can then inspect the state transition in

detail by pausing the CPU right before the memory derefer-
ence point and trying to capture another CPU’s free of this
memory. With Visualinux, the developer can “pin” a specific
maple tree node using a natural-language instruction:

Find me all vm_area_struct whose address is not
<fetched_node_address>, and collapse them.

Large language models (specifically, DeepSeek-V2 [41] in
this paper) can provide the following ViewQL program for
further pruning the states by making unrelated memory
areas invisible for visual clarity:

1 a = SELECT vm_area_struct
2 FROM * AS vma
3 WHERE vma != <fetched_node_address>
4 UPDATE a WITH trimmed: true

The developer can then observe this node being trans-
ferred to the RCU waiting list and later being freed after the
RCU grace period, capturing the use-after-free bug. If locks
are chosen for visualization, their displayed status can also
clearly indicate the lock held incorrectly.

Visualinux enables efficient interactive debugging in two
key aspects. First, ViewCL provides simplified representation
of a huge data structure, and developers can visually map
the nodes to their conceptual model of a maple tree. Second,
after fetching the potentially freed node, the developer can
ask Visualinux to focus on it through a few lines of ViewQL
code (or even natural language). This helps the developer
further simplify the state information and focus on the subset
related to the debugging objective.

4 Visualinux Implementation
We implement Visualinux prototype for interactive debug-
ging. Visualinux can debug the Linux kernel via GDB,whether
for virtual machines or a remote physical machine running
KGDB. It comprises two main components: the GDB ex-
tension, which is integrated into the GDB host to support
ViewCL, and a visualizer front-end that implements ViewQL
and the paneling mechanism. The GDB extension includes
∼4,000 lines of Python code, along with ∼500 lines of GDB
scripts that expose kernel functions invisible to the debugger
in ViewCL, such as static inline functions. The visualizer is
implemented in roughly 2,000 lines of TypeScript, managing
the extracted object graphs, interpreting the ViewQL, and
displaying the panes.

Visualinux implements three GDB commands, referred to
as v-commands:

1. vplot extracts object graphs according to a given ViewCL
program. It can also synthesize naive ViewCL code for
trivial debugging objectives.

2. vctrl controls the panes and the views displayed on them.
For instance, it can split an existing pane to create a new
one, or apply a ViewQL request to an object graph.

3. vchat relies on LLM to provide a natural language inter-
face: it converts the given message to another command
(either vplot or vctrl) with well-formed arguments.

4.1 ViewCL and Interpreter
Though ViewCL has provided a programmatic way to per-
form kernel state simplification, it is still non-trivial to define
a specific plot of a given Linux kernel state. The Linux kernel-
specific mechanisms for heterogeneous resource manage-
ment make the state extraction more complicated, such as
container_of-based data structure management and cpu-
local pointer translators. The Linux kernel also utilizes var-
ious C programming tricks to simulate object-oriented or
functional programming features, such asmultipurpose void
pointers, unions of complex objects, and function pointer
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Figure 6. Visualization of a work list of workqueue
mm_percpu_wq in the Linux kernel. Work lists are hetero-
geneous lists constructed through the container_of mech-
anism, and the types of their nodes are determined by a
function pointer field. The next pointer is the list abstraction
extracted through Visualinux, which is not the real one in
kernel implementation.

sets as operation interfaces. We additionally support the
following features to improve the usability of ViewCL.

Handling data compaction. The Linux kernel widely
adopts data compaction to improve data locality. For ex-
ample, multiple short integers can be packed together into a
single integer, and the low-order bits of an aligned pointer
can be filled with bit flags. ViewCL allows the mixing of C
expressions with ViewCL variables to handle compact data,
e.g., bit fields in a page table entry.

Handling embedded containers. In the Linux kernel, con-
tainer structures (such as linked lists and red-black trees)
are typically nested within objects and organized using the
container_of macro. Figure 6 illustrates an example of a
workqueue in the Linux kernel, which maintains a sequence
of asynchronous tasks scheduled and executed in the back-
ground. For embedded containers, the objects (nodes) them-
selves are unaware of the type information of the data ob-
jects; this information must be inferred through the access
method of the linked list.

ViewCL provides predefined containers to assist in de-
scribing data structures organized by the container_of re-
lation. As demonstrated in Section 1, developers can easily
define an RBTree and customize the member objects. Given
that container_of-based data structures are widespread in
the Linux kernel, this mechanism significantly enhances the
practicality of ViewCL.

Handling polymorphic objects. ViewCL supports switch-
case statements to handle conditional object connections.
For instance, for multipurpose pointers and unions of large
objects, the exact type of object is decided at runtime. More-
over, the combination of Container and switch-case enables
simple handling of significantly complex structures such as
the heterogeneous list in Figure 6.

Text decorators. ViewCL provides decorators to specify
the text format, such as the size and base of an integer. It
is also possible to customize display formats, such as the
function name of a function pointer, or the macro names of
bit flags. We also specifically support EMOJI to intuitively

Table 1. Text decorators supported by ViewCL

Name Format Description

Int <type>:<base> an integer (e.g. u64:x)
Bool bool true/false
Char char an ASCII character
Enum enum:<type> name of an enumerate type
String string evaluated as char*
RawPtr raw_ptr raw value of a pointer
FunPtr fptr name of a function pointer
Flag flag:<id> macro names of a bit flag
EMOJI emoji:<id> visualization of a stateful value

visualize a stateful value, e.g. whether a spinlock is held.
Table 1 shows all available text decorators of ViewCL.

Implementation. ViewCL programs are interpreted by
Visualinux. Starting from a root box object specified at plot,
Visualinux recursively evaluates all expressions and items
by resolving the innermost ${...} (evaluating a C expres-
sion by GDB, in which macros and GDB Python functions
are resolved) or @... (referring to a ViewCL variable, e.g.,
another Python box object).

4.2 ViewQL and Visualizer
The visualizer is implemented as an independent front-end.
It refreshes the panes and their visualized contents upon re-
ceiving an HTTP POST request from v-commands executed
in GDB: either vplot with extracted object graphs, or vctrl
with ViewQL programs or other pane operations.

ViewQL language features. In ViewQL, each object (box)
can be associated with the following attributes (modifiable
by UPDATE) for display control:
• view (string) determines which views of boxes are dis-
played. If absent, the view is set to default.

• trimmed (bool) objects and their descendants are removed
from the graph.

• collapsed (bool) objects are displayed as small buttons;
clicking this button will remove the “collapsed” attribute.

• direction (string) is used for containers, indicatingwhether
they are plotted horizontally (default) or vertically.
ViewQL also provides a built-in function Reachable(V)

to select all reachable objects from an object set V, which
can be further filtered to display a set of objects of interest.
Additionally, ViewQL supports set operations such as inter-
section, union, and difference, as well as object-set operators
like is_inside.

Implementation. Visualinux serializes the box represen-
tation of objects in an in-memory database and transpiles
ViewQL programs to NoSQL queries for execution. We also
implement persisting the state of panes and plots for reuse
across debugging sessions.
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The visualizer can also synthesize a ViewQL program
from the user’s natural language description by invoking a
large language model. Specifically, a text message desc in
vchat will be pasted into the following prompt consisting of
descriptions, guidance, and concrete examples:
A kernel object graph is ... The vertices are dented by
Box (objects), and the edges are Links (pointers).
- Each box has a type and members, and may have the
following attributes: ... (view, trimmed, ...)

- Each member ... (text, link, ...)
- ...

A domain-specific language ViewQL, whose syntax is similar
to SQL database query languages, can be applied to the
kernel object graph.
The VQL only has two types of statements:
- SELECT ...
- UPDATE ...
The syntax of ViewQL is like ...

Here are some examples:
Example 1: select all cfs_rq boxes and change their views

to sched_tree.
ViewQL code: ...

Example 2: ...

I'm intended to {{desc}}. Synthesize a ViewQL program.

Since ViewQL inherits language features from SQL, which
are well-understood by large language models, in-context
learning should not be a major difficulty. DeepSeek-V2 [41]
correctly synthesizes all 10 ViewQL programs in the case
study in Section 5.2.

5 Evaluation
In this section, we evaluate Visualinux to answer the follow-
ing questions:
1. Can Visualinux handle data structures and mechanisms

in the Linux kernel?
2. Can Visualinux assist in diagnosing real-world kernel

bugs that require an understanding of the kernel state?
3. What is the performance overhead associated with kernel

state simplification using Visualinux?

5.1 Evolving Understanding the Linux Kernel
The classic textbook Understanding the Linux Kernel [35],
often referred to as ULK, has educated a generation of Linux
kernel programmers. It provides a comprehensive introduc-
tion to the Linux kernel based on version 2.6.11 (in the 3rd
Edition). The book covers nearly all core topics, such as pro-
cess management, memory management, concurrency, and
more. ULK also includes illustrative figures that effectively
help readers understand these kernel components.

Unfortunately, the ULK book has become outdated today:
the Linux kernel is rapidly evolving with emerging hardware
and software technologies, data structures have changed over
time, andmuch of the example code no longer compiles. Such
rapid development of the Linux kernel makes no textbook
can keep pace with the latest developments [32, 76, 79].

Visualinux offers a unique opportunity to extract high-
quality illustrative figures from real kernel states. For each

Table 2. Representative figures in the book Understanding
the Linux Kernel ported to Linux kernel 6.1.

# Diagram description LOC Δ‡

1 Fig 3-4. process parenthood tree 27
2 Fig 3-6. PID hash tables 48
3 Fig 4-5. IRQ descriptors 59
4 Fig 6-1. dynamic timers 46
5 Fig 7-1. runqueue of CFS scheduler 35
6 Fig 8-2. buddy system and pages 64
7 Fig 8-4. kmem cache and slab allocator 102
8 Fig 9-2. process address space 145
9 Fig 11-1. components for signal handling 71
10 Fig 12-3. the fd array 55
11 Fig 13-3. device driver and kobject 55
12 Fig 14-3. block device descriptors 75
13 Fig 15-1. the radix tree managing page cache 70
14 Fig 16-2. file memory mapping 53
15 Fig 17-1. reverse map of anonymous pages 154
16 Fig 17-6. swap area descriptors 19
17 Fig 19-1†. IPC semaphore management 126
18 Fig 19-2†. IPC message queue management –

19 work queue 89
20 from process to VFS 96
21 socket connection 92

† ULK plots these diagrams as separate figures due to space limits. We can
generate both separate and merged interactive figures.

‡ The data structure changes over the evolution from Linux 2.6.11 to 6.1:
Negligible changes.
Some variables or fields have changed.
Some fields, data structures or object relations have changed.
The underlying data structure underwent significant changes, e.g.,
upgraded to a more efficient implementation.

chapter of ULK, we evaluate Visualinux by visualizing one
or two of the most representative diagrams of that kernel
mechanism, except for:
1. Figures in Chapters 1, 2, 10, 18, and 20 do not involve in-

memory runtime state and are thus beyond our scope. For
instance, Visualinux is not capable of generating a high-
level overview diagram of operating system architecture.

2. Chapter 5 (synchronization) focuses heavily on the evo-
lution of lock states over time, which is also outside our
scope. However, we can visualize the lock state within a
single line of ViewCL code, as described in Section 4.1.

3. The ULK lacks a chapter on the network stack. To address
this, we added a figure of a socket connection as if we
were introducing the Linux kernel’s network subsystem
to the readers.
Table 2 summarizes the results: Visualinux can indeed

“revive” ULK, demonstrating the ability to handle various
complex data structures and Linux kernel components. Code
shared between plots is calculated repeatedly to evaluate for
each independent plot. We also observe that a significant
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Table 3. Debugging objectives for ViewQL usability evalua-
tion. Descriptions are simplified due to space limitations.

Fig. Debugging objective (simplified)

3-4 Display view “show_children” of all tasks and shrink
tasks that have no address space

3-6 Shrink all PID hash table entries except for a set of
specific pids.

4-5 Shrink irq descriptors whose action is not configured.
7-1 Display view “sched” of all processes, and display the

red-black tree top-down.
9-2 Display view “show_mt” of mm_struct, collapse the slot

pointer list, and shrink all writable vm_area_structs.
11-1 Shrink all non-configured sigactions.
14-3 Display the superblock list vertically, and collapse su-

perblocks that are not connected to any block device.
15-1 Shrink the extremely large page list in file mappings.
16-2 Shrink all files that has no memory mapping.

N/A New figure (socket connection): Shrink sockets whose
write/receive buffer are both empty.

proportion of core kernel mechanism implementations have
changed significantly since Linux 2.6.11: 17 out of 21 (81%)
figures for Linux 2.6.11 have lost their timeliness in the latest
kernel, with 14 out of 17 (82%) have undergone significant
implementation changes.
These discrepancies between textbooks and the actual

kernel implementation hinders the new generation of devel-
opers from understanding the Linux kernel. With Visualinux,
developers can gain a visual (or even interactive) representa-
tion of the system structure of the latest kernel with minimal
programming effort, making it easier to intuitively under-
stand the kernel state. All generated plots are available on
our website.

5.2 Case Study (1): Beyond Understanding the Linux
Kernel

Visualinux enables textbook writers to plot illustrative fig-
ures from real kernel states. For example, ULK does not
cover the network system, which is an important compo-
nent of the Linux kernel. We added visualizations of the
kernel work queue, file systems, and live socket connec-
tions in Table 2 (#19–21). For the socket connection case, we
demonstrate the connection between the read/write buffer
queues through the process file descriptor table within a few
lines of ViewCL code, which also efficiently flattens multiple
irrelevant passed-through objects.

The interactive nature of ViewQL also provides a flexible
way to support changing debugging objectives, which helps
developers inspecting the kernel state on demand. We con-
structed hypothetical debugging objectives for 10 selected
diagrams in ULK as listed in Table 3. All these debugging
objectives involve fewer than 10 lines of ViewQL code and

can be successfully generated by DeepSeek-V2 [41] from a
natural-language description.

The following LLM-generated ViewQL program changes
the visualization such that all superblocks are displayed ver-
tically. It further removes all superblocks that are not attrib-
uted to any block device from the visualization, suppose that
we intentionally check disk-based file systems:

1 a = SELECT List
2 FROM *
3 UPDATE a WITH direction: vertical
4 b = SELECT super_block
5 FROM *
6 WHERE s_bdev == NULL
7 UPDATE b WITH collapsed: true

Note that while Visualinux can provide plots consistent
with the latest kernel implementation and a flexible mech-
anism to interactively understand them, it cannot replace
textbooks like ULK, but is an effective supplement to them.
This is because textbooks also explain the logic of the code
in detail, which is beyond the scope of Visualinux.

5.3 Case Study (2): Interactive Debugging

StackRot:Maple tree andRCUwaiting list. The first case
is our motivating example, CVE-2023-3269 [68] (StackRot),
which is a vulnerability in the memory management system
that can be exploited to execute arbitrary kernel code. As
demonstrated in Section 3.2, Visualinux can visualize the
two complex data structures (with irrelevant information
eliminated) and show the memory area being moved to the
RCUwaiting list, revealing the root cause of the vulnerability.

Dirty Pipe: Page cache shared between file and pipe.
CVE-2022-0847 [67] (Dirty Pipe) is a local privilege escalation
vulnerability caused by the flag field of pipe_buffer not
being initialized within certain functions. This glitch became
a flaw due to an update in the Linux kernel 5.8, which did
not involve pipe_buffer at all.

This issue arises when the splice system call moves data
between two file descriptors using zero-copy for the file
descriptor pointing to a pipe (where the pipe data is stored in
the page cache). Unfortunately, the flags in the pipe buffer
lack proper initialization in copy_page_to_iter_pipe(),
and a CAN_MERGE flag will incorrectly mark the pipe buffer
as writable, causing the pipe to directly modify the shared
page cache and corrupt file contents.
This vulnerability involves multiple kernel components,

including process management, the file system, pipes, and
the page cache. Most objects and fields in these components
are irrelevant to the root cause of the bug and should be
excluded from display. With the debugging objective of “a
zero-copy page is being shared across file descriptors” in
mind, we can implement Visualinux program to put relevant
information together: pipe buffer, bug-inducing flags, and
the page. With approximately 60 lines of ViewCL code, we
remove irrelevant objects (including those on the critical
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Figure 7. The Dirty Pipe-related object graph. ViewCL plots the page caches of all files and all pipes from the file table of the
current thread. ViewQL trims all pages except for the shared ones. We mark the only shared page and the erroneous pipe
buffer flag with red borders for clarity.

path of the reference graph), such as the file struct and inode
mappings, from the debugger’s view.
Using the following ViewQL program, we can further lo-

cate all page caches shared between a file and a pipe. This
step of simplification is critical in narrowing down the object
graph to a visually tractable size:

1 // Find pages belong to any file
2 file_pgc = SELECT file->pagecache FROM *
3 file_pgs = SELECT page FROM REACHABLE(file_pgc)
4
5 // Find pages belong to any pipe
6 pipe_buf = SELECT pipe_inode_info->bufs FROM *
7 pipe_pgs = SELECT page FROM REACHABLE(pipe_buf)
8
9 // Trim pages except for shared ones
10 UPDATE pipe_pgs \ file_pgs WITH trimmed: true

As shown in Figure 7, only one page is displayed in the right-
most column (for the buggy workload we have debugged),
and we can clearly observe that the task of pid 107 owns
a page from test.txt, which is shared with a pipe with a
CAN_MERGE flag. Such sharing is prohibited in the kernel and
thus indicates an internal logical error.

This figure evolves as the debugging process proceeds: one
will observe such a pagewith flawed flags being added to the
pipe buffer. Debugging with such dynamic plots is expected
to be more effective than reading textual logs produced by
debugging scripts.

5.4 Performance
We evaluate the performance of Visualinux on two represen-
tative debugging scenarios:

1. GDB (QEMU): Attach GDB to a localhost QEMU emulator
running an x86_64 kernel (a root disk image) consisting
of two virtual CPUs in the Tiny Code Generator (TCG)
mode. The kernel version is 6.1.25. This is a typical setting
for debugging kernel functionality and data structures.

Table 4. Performance results of plotting the representative
ULK figures.

# Figure GDB (QEMU) KGDB (rpi-400)

1 Fig 3-4 59.6 0.45 17.4 7,025.1 23.73 913.7
2 Fig 3-6 155.3 0.17 23.2 20,904.3 9.14 870.2
3 Fig 4-5 39.4 0.35 17.2 4,309.6 16.38 924.6
4 Fig 6-1 181.2 0.15 18.7 8,096.4 6.71 825.4
5 Fig 7-1 13.7 0.22 14.1 33.6 8.41 1202.3
6 Fig 8-2 60.2 0.12 16.8 3,213.8 6.63 894.2
7 Fig 8-4 12.8 0.42 13.3 894.9 29.97 945.3
8 Fig 9-2 48.6 0.29 32.0 1,402.1 8.44 930.3
9 Fig 11-1 45.6 0.31 26.7 1,392.5 9.94 852.4
10 Fig 12-3 10.9 0.13 87.5 24.7 0.34 1411.7
11 Fig 13-3 326.0 0.87 40.9 7,602.3 20.43 952.5
12 Fig 14-3 80.3 1.11 36.7 1,972.1 27.38 903.3
13 Fig 15-1 84.7 0.37 42.8 86.0 1.17 931.9
14 Fig 16-2 10.1 0.12 31.4 36.2 0.51 1101.0
15 Fig 17-1 62.4 0.31 24.7 2,322.6 11.55 921.4
16 Fig 17-6 34.3 0.33 51.6 559.0 5.53 840.6
17 Fig 19-1/2 19.0 0.52 12.5 1,078.8 41.46 861.7

18 workqueue 11.9 0.33 10.5 1,779.5 26.16 810.1
19 proc2vfs 40.2 0.31 22.1 659.3 8.13 819.0
20 socketconn 20.8 0.18 42.5 17.4 0.25 1062.5
Each | 𝑥 𝑦 𝑧 | represents a visualization overhead, where 𝑥 denotes the
total cost in milliseconds, 𝑦 indicates the cost per object in milliseconds,
and 𝑧 specifies the cost per kilobyte of data structure in milliseconds.

2. KGDB (Raspberry Pi 400): Attach GDB to a remote host run-
ning KGDB on a Raspberry Pi 400 (Ubuntu 22.04 Aarch64).
The kernel version is 6.1.0-rpi8. This is a typical setting
for debugging real embedded systems.

We implement a workload (∼500 LOC) that creates five
processes (each process creates two threads), with each thread
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repeatedly calling the operating system for IPCs,mapping/un-
mapping files and anonymous pages, etc. We visualize all
figures in Table 2 and collect the runtime statistics for the
most time-consuming step of ViewCL program execution2.
Table 4 shows the performance evaluation results. The

major performance bottleneck of Visualinux is evaluating
the C expressions (e.g., node.mr64.slot) in ViewCL, and
the latency is acceptable for a human debugger for most
figures for both evaluated scenarios.

We also observe that KGDB on a slower device like Rasp-
berry Pi 400 is significantly slower than GDB-QEMU on
localhost: retrieving an object is approximately 50 times
slower, with even retrieving a uint64 via KGDB costing
approximately 5ms. This is due to both slower processors
in the embedded system and KGDB delays, which makes
plotting large data structures (e.g., Fig 3-6) that frequently
invoke C-expression evaluation slow. However, if we focus
our debugging objective on smaller data structures, the per-
formance of Visualinux would be considered acceptable for
both platforms.

6 Related Work

Interactive debugging. Various automated debugging so-
lutions have been proposed, including delta debugging [66,
85, 91], statistical debugging [30, 53, 61, 70, 89], causal trac-
ing [42, 52, 63, 86], and reverse debugging [37, 45, 84, 90].
These solutions aim to improve the efficiency of fault re-
production or root cause diagnosis. However, past research
indicates that automated debugging tools offer limited as-
sistance when developers face challenging debugging tasks
[72, 88], especially those that are beyond the capabilities
of the tools. This paper focuses on interactive debugging
[29, 36, 55, 56]. Since full automation is still a distant goal,
we believe that practical approaches to interactive debugging
is indispensable for developers.
Whyline [55, 56] allows developers to ask why and why-

not questions about program output and generates answers
using various program analyses, providing an interactive
way to trace data dependencies. Hypothesizer [29] records
program behaviors and user actions during bug reproduction,
based on which it generates possibly-relevant hypotheses
about program state and behavior, continuously narrowing
down the problem scope through interaction. Although help-
ful for program understanding, existing research does not
solve problems from the perspective of program state and
offer limited assistance in diagnosing bugs involving com-
plex data structures. Moreover, none of these approaches are
applicable to complex systems like the Linux kernel.

Visualized interactive debugging. Past research has con-
firmed that program visualization can effectively help devel-
opers understand program state and behavior [39, 49, 62, 64,

2ViewQL and front-end rendering incur negligible overhead.

73, 77, 78, 81]. Multiple research projects have focused on
constructing visualized interactive debuggers since one of
the core purposes of interactive debugging is to understand
the program [15, 31, 38, 48, 57, 69, 71, 92]. Additionally, there
are interactive tools designed specifically for understanding
algorithms, data structures, and call graphs [1, 9, 58].

However, traditional visualization-based debugging tech-
niques are not suitable for complex software systems with
excessively large and complex program states, such as the
Linux kernel. The lack of suitable abstractions in these tech-
niques forces developers to work with complete diagrams
of entire massive objects and handle long and deep pointer
chains. Therefore, directly applying such techniques to the
Linux kernel would be impractical.

Interactive debugging for kernels. Kernel debugging has
been studied for many years [33, 34, 45, 52, 54, 83]. How-
ever, most of the existing research focuses on automated
debugging techniques and overlooked the importance of
interactive debugging.

During the long-term evolution of the Linux kernel, a num-
ber of tools have been proposed to help developers debug
and diagnose the kernel and understand the kernel from vari-
ous perspectives, including interactive debugging [2, 11, 28],
runtime validation [16–18, 25], logging [22], and tracing
[19, 27]. Visualinux has a particular focus on visualizing a
program state, but takes a different approach from scripting
tools like GDB scripts [11, 28] and drgn [2]. It also offers
high-level data structure abstractions not present in existing
state analysis tools [10, 12].
drgn [2, 13] is a modern, programmable kernel debugger

that enables developers to debug the kernel in a Pythonic
way. It offers several Linux-specific helper functions to sim-
plify access to various kernel data structures, such as IDRs
and maple trees [13]. drgn also supports writing reusable
debugging scripts. However, as a textual tool, drgn does not
provide intuitive illustrations of high-dimensional data struc-
tures. It offers limited assistance in understanding the kernel
state, which is where Visualinux excels.

Visualinux is also not the first work that utilizes visualiza-
tion to assist in understanding the Linux kernel. However,
previous approaches focus on various domains such as traces
[6, 27], call graphs [3] and source code organization [7, 80],
which are orthogonal to Visualinux.

High-level query languages for debugging. Visualinux
is not the first solution to leverage a high-level query lan-
guage to bridge the gap between human and software that
hinders debugging. However, many existing approaches fo-
cus on designing and implementing abstractions for execu-
tion traces to solve problems from a temporal perspective
[40, 46, 47, 60, 63, 65, 74], which are orthogonal to Visualinux.
Object query languages [43, 44, 75, 87] access runtime

objects through relational interfaces. PiCO QL [44], for in-
stance, defines a relational representation of accessible Linux
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kernel data structures and allows developers to customize
views for system resources. This paper focuses on program
understanding, not just bug diagnosis, so our solution is
quite different from existing research: Visualinux combines
a declarative model of the kernel state with a relational inter-
face for object graph manipulation, intentionally decompos-
ing the challenges to facilitate easier kernel understanding.

7 Conclusion
This paper presents Visualinux, the first debugging frame-
work that simplifies the Linux kernel state to a level that can
be visually understood with low programming complexity
and effort. Built upon two domain-specific languages for ker-
nel state simplification and view customization, Visualinux
provides developers with an intuitive perspective to visu-
ally understand the Linux kernel objects. Its integration with
GDB and combination with large language models also make
it easy to use in real-world debugging tasks.
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A Artifact Appendix
A.1 Abstract
This artifact consists of:
1. The implementation of Visualinux, which comprises a

GDB extension and a visualization front-end.
2. A Docker image containing scripts and ViewCL source

code for reproducing the evaluation results.

A.2 Description & Requirements
A.2.1 How to access. Visualinux is publicly available at:

https://icsnju.github.io/visualinux

The paper’s corresponding version is also archived at https:
//doi.org/10.5281/zenodo.13710732.

A.2.2 Hardware Dependencies. The machine should be
capable of compiling and debugging the Linux kernel (ap-
proximately 6GB of disk space is required). KGDB experi-
ments were conducted on a Raspberry Pi 400 PC kit.

A.2.3 Software Dependencies. A Unix-like operating
system is required with the environment necessary to com-
pile and debug the Linux kernel. This artifact further requires
GDB to be compiled with Python support (this is usually
the default option for today’s GDB releases), and Node.js for
launching the visualizer front-end. Specifically:

• GCC 11+
• GDB 12+
• QEMU 6+
• Python 3.10+
• Node.js 18+
• make
• gcc-multilib

• flex
• bc
• bison
• xz-utils
• libelf-dev
• libssl-dev

The evaluation results (data structures) in the paper cor-
respond to Linux kernel 6.1.X. For other kernel versions, the
ViewCL scripts may subject to minor changes. We conducted
our experiments on Ubuntu Server 22.04 LTS.

A.3 Evaluation Workflow
A.3.1 Major Claims.

• (C1): Visualinux can handle various data structures and
components in the Linux kernel, demonstrated by “reviv-
ing” the figures in the classic textbook ULK (Table 2).

• (C2): Visualinux provides a flexible way to help achieve
debugging objectives that vary in practice (Table 3).

• (C3): Visualinux can assist in diagnosing real-world kernel
bugs that require an understanding of kernel state, demon-
strated by case studies of two well-known CVEs (Figures 4
and 7).

• (C4): Visualinux has an acceptable performance overhead
(Table 4).

A.3.2 Experiments. Instructions for reproducing the eval-
uation results are available in the public repository. The
reproduction goals and estimated time costs are listed below.
Preparation. The kernel must be compiled first, which re-
quires 1 human-minute and ∼60 compute-minutes. Booting
the kernel in GDB-QEMU requires 1 human-minute and 1
compute-minute.
Textbook Revival. This experiment generates representa-
tives figures from the textbook ULK that achieve the hypo-
thetical debugging objectives (i.e. the corresponding ViewQL
code applied). C1 and C2 together require 1 human-minute
and 3 compute-minutes.
CVE Case Studies. This experiment generates plots of data
structures involved in the studied CVEs, where irrelevant
objects are collapsed. To reproduce just the plots, C3 requires
only 1 human-minute and 1 compute-minute. However, to
fully reproduce the scenarios that expose the vulnerabilities,
much more effort is required to prepare the specific kernel
versions.
Performance. This experiment re-evaluates the perfor-
mance of generating the ULK figures. C4 (GDB/QEMU) re-
quires 1 human-minute and 3 compute-minutes. C4 (KGDB/rpi-
400) requires 1 human-minute and 10 compute-minutes (as-
suming that a Linux environment on rpi-400 has been de-
ployed).

https://icsnju.github.io/visualinux
https://doi.org/10.5281/zenodo.13710732
https://doi.org/10.5281/zenodo.13710732
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