
Software-Defined Ubiquitous Operating System: A New
Paradigm for Human–Cyber–Physical Systems

Yunfan Cao, Chaoyi Zhao, Hanzhi Liu, Jiayi Wang, Deyu Kong, Huiyan Wang, Ping Yu, Chun Cao,
Chang Xu, Xiaoxing Ma, Yanyan Jiang

State Key Laboratory for Novel Software Technology at Nanjing University
School of Computer Science, Nanjing University

Nanjing, China

Abstract
The convergence of the Internet of Things (IoT) and Artificial
Intelligence (AI) has ushered in an era of ubiquitous comput-
ing, creating immense opportunities for intelligent Human-
Cyber-Physical Systems (HCPS). However, developing such
applications is hindered by fundamental challenges: manag-
ing massively heterogeneous resources, decomposing com-
plex and evolving requirements, and integrating probabilistic
AI models with deterministic software logic. To address this,
we propose a software-defined Ubiquitous Operating System
(UOS), a novel paradigm designed for the unique demands
of ubiquitous computing. Our UOS is built on three core
principles: (1) a Software Twin to enable unified manage-
ment of heterogeneous resources through abstraction; (2) a
Reporting and Commanding architecture to hierarchically de-
compose application complexity; and (3) an AI-Native design
to seamlessly integrate intelligence and manage uncertainty.
We demonstrate its potential in three representative: an OS
Intelligent Assistant, the "Tianwang" Urban-scale Monitoring
System, and a national disease prevention system, demon-
strating its capacity to significantly simplify the development
of robust and intelligent ubiquitous applications.

Keywords: Ubiquitous Computing, Ubiquitous Operating Sys-
tem, Software Engineering

1 Introduction
The proliferation of the Internet of Things (IoT) is creating
a new class of human-cyber-physical systems (HCPS) [6],
from smart cities to intelligent healthcare [13]. However, their
development is hindered by a new "software crisis" stemming
from three principal challenges:

1. Heterogeneous Resource Management: Ubiquitous
environments are characterized by vast, dynamic, and
heterogeneous resources (e.g., sensors, actuators) for
which traditional OS abstractions like files and pro-
cesses are inadequate [3, 10].

2. Complex Requirement Decomposition: HCPS in-
volve complex, high-level goals (e.g., "optimize city
traffic") that are difficult to decompose into manage-
able tasks for distributed components.

3. AI Integration and Uncertainty: There is a huge gap
between the probabilistic nature of AI models (e.g.,

LLMs) outputs and the precise formal semantics of
programming languages. Systems must manage the
inherent uncertainty from AI decisions.

Traditional OS abstractions struggle to address these chal-
lenges effectively. While some middleware and frameworks
exist, they are usually limited to specific functions and lack a
system-level perspective. Following the historical "20-year cy-
cle" of OS evolution [2, 7], we argue that the era of ubiquitous
computing necessitates a new OS paradigm: the Ubiquitous
Operating System (UOS) [8].

This paper introduces a software-defined UOS paradigm de-
signed to provide foundational support for intelligent HCPS
applications. It is based on three pillars: using a Software
Twin concept to abstract resources, a Reporting and Com-
manding architecture to manage complexity, and an AI-Native
design to seamlessly integrate intelligence [12, 18].

2 The Ubiquitous Operating System
Building on these insights, we propose the UOS as an over-
arching framework for managing HCPS. Its architecture is
organized around three core principles, as illustrated in Figure
1.

2.1 Fundamental Capability: Software Twin
To tackle resource heterogeneity, the UOS establishes a Soft-
ware Twin which is a real-time, digital representation of the
entire HCPS environment [4]. It creates a holistic and unified
view of the system’s state, encompassing all physical devices,
software components, and human users. This approach shifts
the programming paradigm from "building features to meet re-
quirements" to "making decisions based on total system data",
a vision shared by context-aware computing research [11, 16].

Instead of programming against low-level, device-specific
APIs, developers program against this holistic and unified
state. The UOS provides the underlying mechanisms (e.g.,
leveraging technologies like eBPF or JVM TI for non-intrusive
instrumentation) to construct and maintain this twin. Applica-
tions can then query, filter, and react to patterns in this global
state, effectively extracting useful information they need from
the whole, thus simplifying development and enabling power-
ful and context-aware behaviors.



Yunfan Cao et al.

Basic Architecture

Reporting and Commanding

Fundamental Capability

Software Twin
System Service Application ……Sensor

Issue

Commands
Report

Data

Design Principle

AI-Native

Application

Requirements

Unified Data

Intelligent Processing

Low-code Components &

AI-driven Code 

Synthesis

AI-driven Data 

Aggregation & Validation

Root Component

(Agent)

Component

(Agent)
Component

(Agent)

Component

(Agent)

Component

(Agent)

Component

(Agent)

Report 

Data
Report 

Data

Issue 

Commands

Figure 1. The architecture of the UOS. The Software Twin
provides a unified view of underlying resources. The Report-
ing and Commanding architecture organizes the system into a
hierarchy of agents. The AI-Native design principle governs
data flow and enables intelligent processing at each level.

2.2 Basic Architecture: Reporting and Commanding
To manage application complexity, the UOS organizes appli-
cations into a hierarchical structure of cooperative compo-
nents, which we term ubiquitous agents [14, 15]. This design
is inspired by the effective organizational structures found
in human society and is a departure from the flat, broadcast-
based communication models (e.g., Android’s Intents) that
lead to quadratic complexity growth.

This structure defines a clear communication pattern:

• Reporting: Leaf agents, representing sensors or data
sources, report their state upwards. Parent agents ag-
gregate and abstract the data from their children, pro-
viding a summarized view to the next level up.

• Commanding: Higher-level agents decompose tasks
and issue commands to their children. This flow con-
tinues down the tree until it reaches leaf agents con-
trolling physical actuators or software APIs.

At the system support level, the UOS should be responsible
for managing the streams of data and commands between
agents. It provides a disciplined way to structure applica-
tions, manage data flow, and naturally decompose complex
problems.

2.3 Design Principle: AI-Native
To overcome the challenge of uncertainty, the UOS is de-
signed to be AI-Native. This principle standardizes inter-agent
communication to make data flows inherently intelligible to
AI models. We propose a universal data unit based on a four-
element tuple: time (when), location (where), subject (who),
and event (what).

This structured format enables LLMs to directly interpret
system behavior, facilitates low-code development where
models can synthesize component logic [5], and supports
adaptive handling of uncertain or erroneous data [17]. It also

allows for integrating advanced model management frame-
works like Learnware [18] for scheduling the right model for
each sub-task.

3 Application Cases
We demonstrate the UOS design’s effectiveness through three
HCPS scenarios.

OS Intelligent Assistant. Unlike current OS copilots lim-
ited to first-party apps [1, 9], a UOS-based assistant can han-
dle complex commands like "Create a diary of my trip last
week". A root agent decomposes this task, issuing commands
to agents for photos, location, and calendar services. These
agents query the Software Twin, report relevant data, and the
root agent aggregates the results. Component reuse is maxi-
mized. For example, a single face recognition component can
serve multiple applications like photo galleries and security
systems.

"Tianwang" Urban-scale Monitoring System. In a UOS-
based "Tianwang" system, the Software Twin unifies count-
less cameras and IoT sensors into a city-state view. A traffic
management application can issue a high-level command like
"reduce congestion on main street," which is decomposed
down to components managing traffic lights and navigation
services. These components collaborate using real-time data
reported from sensor agents. The data and components are
reusable for other applications like urban planning or emer-
gency response.

Disease Prevention and Control. A UOS can power a
national public health system. The Software Twin would inte-
grate fragmented data (from hospitals, wearables, etc.) into
a real-time population health view. The Reporting and Com-
manding Architecture enables an efficient data pipeline for
health reporting and public alerts. The AI-Native design al-
lows predictive models to detect outbreaks and dynamically
generate software components for new public health proto-
cols.

4 Conclusion
The ubiquitous computing era requires a new paradigm for
constructing HCPS. We proposed the UOS to address the core
challenges of heterogeneity, complexity, and AI integration
in HCPS. Its three principles: Software Twin, Reporting and
Commanding architecture, and AI-Native design, offer a co-
herent framework for building future intelligent and adaptive
systems. Our future work will focus on tooling for migrating
existing software to the UOS model and exploring solutions
for security, privacy, and performance in this paradigm.

Acknowledgments
This work was supported by the National Key R&D Program
of China (Grant No. 2022YFB4501800).



Software-Defined Ubiquitous Operating System

References
[1] Apple Inc. 2024. Apple intelligence. https://www.apple.com/hk/en/

apple-intelligence Accessed: 2024-10-21.
[2] Gordon Bell. 2008. Bell’s law for the birth and death of computer

classes. Commun. ACM 51, 1 (2008), 86–94.
[3] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair. 2011. Distributed

Systems: Concepts and Design. Addison-Wesley Publishing Company
(2011).

[4] Ziqi Huang, Yang Shen, Jiayi Li, Marcel Fey, and Christian Brecher.
2021. A Survey on AI-driven digital twins in Industry 4.0: smart
manufacturing and advanced robotics. Sensors 21, 19 (2021), 6340.

[5] Cong Li, Yanyan Jiang, and Chang Xu. 2022. Push-button synthesis of
watch companions for android apps. In Proceedings of the 44th Inter-
national Conference on Software Engineering (ICSE). 1793–1804.

[6] Zhiming Liu and Ji Wang. 2020. Human-cyber-physical systems: con-
cepts, challenges, and research opportunities. Frontiers of Information
Technology & Electronic Engineering 21, 11 (2020), 1535–1553.

[7] Hong Mei, Donggang Cao, and Tao Xie. 2022. Ubiquitous Operating
System: Toward the Blue Ocean of Human–Cyber–Physical Ternary
Ubiquitous Computing. Bulletin of Chinese Academy of Sciences 37, 1
(2022), 30–37.

[8] Hong Mei and Yao Guo. 2018. Toward ubiquitous operating systems:
a software-defined perspective. Computer 51, 1 (2018), 50–56.

[9] Microsoft. 2024. Windows Copilot. https://www.microsoft.com/en-
us/microsoft-copilot/personal-ai-assistant Accessed: 2024-10-21.

[10] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, et al. 1995.
Plan 9 from Bell Labs. Computing Systems 8, 2 (1995), 221–254.

[11] Huiyan Wang, Chang Xu, Bingying Guo, Xiaoxing Ma, and Jian Lu.
2019. Generic adaptive scheduling for efficient context inconsistency
detection. IEEE Transactions on Software Engineering (TSE) 47, 3
(2019), 464–497.

[12] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen
Zhang, Zhiyuan Chen, Jiakai Tang, Xu Chen, Yankai Lin, Wayne Xin
Zhao, Zhewei Wei, and Jirong Wen. 2024. A survey on large language
model based autonomous agents. Frontiers of Computer Science 18, 6
(2024), 186345.

[13] Mark Weiser. 1999. The computer for the 21st century. ACM SIGMO-
BILE Mobile Computing and Communications Review (MC2R) 3, 3
(1999), 3–11.

[14] Michael Wooldridge. 2009. An Introduction to Multiagent Systems.
Second Edition. Wiley Publishing (2009).

[15] Michael Wooldridge and Nicholas R. Jennings. 1995. Intelligent agents:
theory and practice. The Knowledge Engineering Review 10, 2 (1995),
115–152.

[16] Chang Xu, Shing Chi Cheung, Wing Kwong Chan, and Chunyang
Ye. 2010. Partial constraint checking for context consistency in per-
vasive computing. ACM Transactions on Software Engineering and
Methodology (TOSEM) 19, 3 (2010), 1–61.

[17] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. 2024. Gen-
eralized out-of-distribution detection: a survey. International Journal
of Computer Vision (IJCV) 132, 12 (2024), 5635–5662.

[18] Zhi-Hua Zhou. 2016. Learnware: on the future of machine learning.
Frontiers of Computer Science 10, 4 (2016), 589–590.

https://www.apple.com/hk/en/apple-intelligence
https://www.apple.com/hk/en/apple-intelligence
https://www.microsoft.com/en-us/microsoft-copilot/personal-ai-assistant
https://www.microsoft.com/en-us/microsoft-copilot/personal-ai-assistant

	Abstract
	1 Introduction
	2 The Ubiquitous Operating System
	2.1 Fundamental Capability: Software Twin
	2.2 Basic Architecture: Reporting and Commanding
	2.3 Design Principle: AI-Native

	3 Application Cases
	4 Conclusion
	Acknowledgments
	References

