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Abstract
Understanding the Linux kernel is challenging due to its
large and complex program state. While existing kernel de-
bugging tools provide full access to kernel states at arbitrary
levels of detail, developers often spend a significant amount
of time sifting through redundant information to find what is
truly useful. This paper presents Visualinux, the first debug-
ging framework that can simplify the program state of the
Linux kernel to a level that can be visually understood with
low programming complexity and effort. Evaluation results
show that Visualinux can visualize various complex kernel
components and efficiently assist developers in diagnosing
sophisticated kernel bugs.
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1 Motivation
For years, developers have used GDB [5, 7, 11] and log/trace
tools [8–10] to debug the Linux kernel. These tools provide
mechanisms to examine kernel states at various levels of
detail. However, considering that the human brain can only
handle a limited amount of information at a time, developers
are often overwhelmed by the abundance of information.
Unfortunately, existing tools require significant human or
programming effort to extract a specific subset of the infor-
mation for a particular debugging objective.

As a typical example, the maple tree [3] introduced in the
Linux kernel 6.1 is a scalable data structure for maintaining
a set of ordered intervals, which replaces the two-decade-old
red-black tree-based implementation of memory-mapped
regions. We struggled to understand this new data structure:
a textual interface naturally falls short of displaying high-
dimensional information (e.g., an interconnected, complex
data structure) in a readable way.Wewrote scripts to unwrap
the union type of nodes and parse the compressed pointers.
Nevertheless, comprehending the list of tree nodes with
indirect pointers remained mentally challenging.
The obstacle to understand the maple tree is rooted in

the complexity of the Linux kernel: there are millions of
live objects at runtime, with complex relations among them.
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Simply “printing” these objects as text produces an over-
whelming amount of information for debugging purposes.
Such complexity leads to the following question:

What kind of mechanism can help developers ef-
fectively and efficiently customize a view of the
kernel object graph for the purpose of understand-
ing kernel states?

Existing kernel debugging techniques either do not focus
on program state understanding [1, 5, 11, 13, 16, 19] or lack
appropriate abstractions for high-level data structures [4, 6].
Moreover, most of existing tools are textual and are unable to
produce readable results for high-dimensional information.
Past research has confirmed that program visualization

can effectively help developers understand program states
[17, 22, 26]. However, none of traditional visualized debug-
gers can handle the excessively large and complex program
state of the Linux kernel [12, 20, 27]. The lack of suitable
abstractions in existing tools forces developers to work with
complete diagrams of entire massive objects and handle long
and deep pointer chains.

2 Approach
We respond to the question in Section 1 by observing that the
kernel state is essentially a graph, where kernel objects are
pointer-connected nodes. A human debuggers’ (implicit) goal
is to simplify this graph to meet their debugging objectives.
This paper argues that such simplified views can be created
through two layers of simplification:

1. ViewCL, the View Construction Language, which allows
for the creation of object graphs (plots) at customizable
levels of abstraction. ViewCL employs three fundamental
operators—prune, flatten, and distill—to programmatically
reduce the kernel states.

2. ViewQL, the View Query Language, which enables cus-
tomization of a simplified object graph in a developer-
friendly manner. ViewQL provides the ability to exclude
specific irrelevant object types or fields, eventually pro-
ducing a human-readable plot.

Our approach is designed upon Daniel Jackson’s small
scope hypothesis [18], which suggests that a small portion
(sufficiently small to be visually processed by the human
brain) of the state suffices for understanding and debugging
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Figure 1. A screenshot of the Visualinux debugger.

a specific part of the system. Our two domain-specific lan-
guages work together to break down the large, complex ker-
nel state into simpler state “views” that are visually tractable.
With commonly used Linux kernel data structures and con-
tainers being predefined in ViewCL, most developers can
work exclusively with ViewQL, often without even being
aware of ViewCL’s existence. The simplicity of ViewQL also
enables large language models to customize plots based on
user’s textual descriptions, without requiring knowledge of
either ViewCL or ViewQL.

Visualinux is the first debugging framework that enables
developers to programmatically simplify the program state
of the Linux kernel to a level that can be visually under-
stood. This is beyond the capability of existing debugging
abstractions [15, 21, 25]. Visualinux also offers developers a
user-friendly, push-button interface tomanagemultiple plots
and customize their displayed views, as Figure 1 illustrates.

Visualinux is capable of visualizing data structures at var-
ious levels of customizations. For instance, only a few lines
of ViewCL code can yield a plot of the CFS Scheduler Run
Queue, which is visualized as a binary search tree managing
the Completely Fair Scheduler (CFS) [2] run queue:

1 // Declare a Box for a task_struct object
2 define Task as Box<task_struct> [
3 Text pid, comm
4 Text ppid: parent.pid
5 Text<string> state: ${task_state(@this)}
6 // ${...} evaluates a C expression
7 // @this refers to the Box itself
8 Text se.vruntime
9 ]
10 // cpu_rq(0) is the run queue of the first processor
11 root = ${cpu_rq(0)->cfs.tasks_timeline}
12 // RBTree is our predefined container data structure
13 // @root refers to the definition in Line 11
14 sched_tree = RBTree(@root).forEach |node| {
15 // For each node yield (create) a box of Task whose
16 // associated object is @node.se.run_node
17 yield Task<task_struct.se.run_node>(@node)
18 }
19 // Plot the object graph rooted at @sched_tree
20 plot @sched_tree

3 Implementation and Evaluation
We implement Visualinux prototype for interactive kernel
debugging. It comprises two main components: the GDB
extension, which is integrated into the GDB host to support
ViewCL, and a visualizer front-end that supports ViewQL.
The tool is publicly available at:

https://icsnju.github.io/visualinux

Our evaluation shows that Visualinux can handle various
data structures and mechanisms in the Linux kernel. Specif-
ically, it is capable of porting representative figures from
the well-known (though now obsolete) textbook Understand-
ing the Linux Kernel [14] to the latest Linux 6. All of the
plots are available in the public site, including the maple tree
mentioned in Section 1.

Visualinux can also assist in diagnosing real-world kernel
bugs that require an understanding of the kernel state. We
demonstrate its effectiveness through case studies involving
the diagnosis of real-world Linux kernel CVEs [23, 24].

Finally, we evaluated Visualinux in two representative de-
bugging scenarios and the results show that the performance
overhead of Visualinux is generally acceptable.

https://icsnju.github.io/visualinux
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